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The Impala’s horn applied to posterior samples of

Ti-6Al-4V strength model parameters

Sky Sjue, Ayan Biswas, Devin Francom, D. J. Luscher,
JeeYeon Plohr and David Walters

1 Introduction

We have generated strength model parameters for the Preston-Tonks-Wallace
(PTW) model of plastic deformation based on a collection of Ti-6Al-4V alloy
data and a Bayesian framework [1]. This data collected from the literature in-
cludes different chemistries and processes. The experiments include quasistatic
compression, Split Hopkinson Pressure Bar (SHPB) compression, and Taylor
cylinders [2, 3, 4, 5, 6, 7, 8, 9, 10]. Here we use posterior parameter distribu-
tions applied to a hypothetical impact referred to as the Impala’s horn. The
Impala’s horn is like a Taylor cylinder, but modified to have a conical profile
that is truncated before coming to a point. The smaller diameter at the impact
end results in higher calculated strain rates and strains than the same velocity
impact with the traditional Taylor profile. The modified geometry exercises the
behavior of the strength model outside the range of conditions found in the
calibration data.

Here we sort posterior strength models based on their flow stress at char-
acteristic values for this hypothetical deformation. Then we compare the per-
formance of these posterior models based on two simple observable final state
properties of the Impala’s horn.

2 Geometry

The Impala’s horn geometry used here has a maximum radius of 0.5 cm and a
minimum radius of 0.15 cm, with a linear taper over length 5 cm. The Taylor
cylinder simulation for comparison uses a constant radius of 0.5 cm over length
5 cm. For the results presented here, both are given an initial velocity of 180
m/s into a collision with a rigid flat surface. These geometries are shown in
Figure 1.
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Table 1: Comparison between characteristic quantities for the Impala horn and
Taylor cylinder

quantity Impala Taylor
〈T 〉 694 K 359 K
〈ε〉 0.6 0.06
〈ε̇〉 40,000/s 12,000/s

3 Effective values for posterior strength model
samples

In order to sample the posterior distributions of the strength model parame-
ters, we focus on quantities of interest for the Impala horn problem. We run
a simulation in FLAG [11] with a nominal PTW strength model from our cali-
bration, then find effective values of the temperature, strain and strain rate by
tabulating the following quantities over the history of the simulation.

〈ε̇〉 =
1

N1

∫
dε

∫
d3rε̇(ε, ~r) (1)

〈T 〉 =
1

N1

∫
dε

∫
d3rT (ε, ~r) (2)

〈ε〉 =
1

N2

∫
dε

∫
d3r (3)

N1 =

∫
dε

∫
d3r (4)

N2 =

∫
εf>0

d3r (5)

The final quantities 〈ε〉, 〈ε̇〉 and 〈T 〉 are the effective values of the plastic strain,
plastic strain rate and temperature for the deformation process in consideration.
N2 is simply the volume of the specimen being deformed. The integral over
strain ensures that undeformed volumes do not distort the quantities of interest.
One could similarly find values for the pressure (〈P 〉) or density (〈ρ〉).

For an initial comparison, we run both the Taylor cylinder and the Impala
horn to find the values in Table 1.

4 Summary

We compare the final length of the Impala’s horn and the final radius of the
deformed boot-like part at the impact end. These values are shown in Figure 2.
These models resulting from the posterior ranking by flow stress are not unique
when it comes to strain hardening and strain rate behavior, as shown in Figure
3. While we observe that the posterior parameters and the resulting strength
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Figure 1: On the left is the profile of one half of a cylindrical sample with the
traditional aspect ratio of a Taylor cylinder. At t = 0 is the pre-deformation
profile of the Impala horn, with a conical shape tapering from r = 0.5 cm to
r = 0.15 cm. The profiles labelled 5%, 50% and 95% show posterior samples
sorted into percentiles based on the flow stress at the characteristic quantities
given in Table 1. There are four profiles at 5% and 95% and three profiles at
50%.
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Figure 2: Comparison of the final length and maximum deformed radius of
the Impala horn as a function of flow stress at the characteristic conditions. We
also note that the nominal parameter values that were used to begin give results
consistent with the 50% posterior samples, with a final length of 4.33 cm and a
maximum final radius of 5.0 mm.

models differ significantly, they give very similar results for the Impala horn
when ranked by flow stress at the effective values 〈ε〉, 〈ε̇〉 and 〈T 〉. Parameters
for the eleven models selected from the posterior for this exercise are given in
Table 2.
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Figure 3: Comparisons of all posterior PTW models at strain rates of 2000/s
(left) and 108/s (right) assuming isothermal behavior at T=300 K. Note that
the relative behavior of these strength models varies widely from low to high
rate.

Table 2: Posterior samples rated by flow stress at 〈ε〉, 〈ε̇〉 and 〈T 〉. The first row
gives the nominal parameter set used to find the characteristic values in Table
1 to rank the posterior samples. The first column gives the sample’s percentile
from 2000 total posterior samples. The remaining parameters are part of the
PTW model.

% θ p s0 s∞ κ γ y0 y∞ y1 y2
nom 0.0375 1.00 0.0245 0.009 0.190 2.00e-6 0.0190 0.0076 0.0245 0.33
4.95 0.0264 2.67 0.0336 0.00628 0.305 7.77e-5 0.0256 0.00574 0.0613 0.611
5.00 0.123 2.77 0.0294 0.0046 0.269 4.31e-5 0.0225 0.00393 0.0656 0.669
5.05 0.110 1.97 0.0294 0.00714 0.339 2.64e-5 0.0221 0.00556 0.0606 0.834
5.10 0.126 3.01 0.0270 0.00601 0.287 3.32e-5 0.0208 0.005 0.0634 0.659
49.95 0.0081 3.55 0.0303 0.0104 0.128 4.76e-5 0.0235 0.0043 0.0676 0.576
50.00 0.183 2.37 0.0214 0.00912 0.0768 2.5e-5 0.0151 0.00705 0.0619 0.785
50.05 0.00076 2.27 0.0331 0.0217 0.0924 4.99e-5 0.0232 0.00633 0.0686 0.742
94.90 0.059 2.84 0.0307 0.0193 0.101 5.37e-5 0.0226 0.0086 0.0564 0.746
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95.00 0.149 1.30 0.0340 0.0176 0.173 2.79e-5 0.0231 0.0093 0.0630 0.843
95.05 0.0035 4.19 0.0413 0.0286 0.0139 2.65e-5 0.0248 0.0051 0.0813 0.843
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